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1. Introduction

A new generation of hetero-bifunctional small molecules, termed PROTACSs,

significant therapeutic potential by inducing degradation of target proteins.
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Characterizing and optimizing PROTACSs for degradation efficacy represents a
significant challenge, particularly in understanding the individual processes and
potential failure points that control whether degradation will result. Currently, the
availability of live cell assays to interrogate the multiple steps that are required to

achieve degradation by PROTACSs is severely lacking.

Here, we present a live-cell, luminescence-based technology platform that enables
characterization of PROTAC compound mechanism of action using either ectopic
or endogenous target expression formats. We employ CRISPR/Cas9 endogenous
tagging of target proteins with the small peptide, HIBIT, which has high affinity for
and can complement with the LgBIT protein to produce NanoBIT luminescence.
This allows for sensitive detection of endogenous protein levels in living cells, and
can also serve as a BRET energy donor to study protein:protein or protein:small
molecule interactions. Using this combinatorial approach, we demonstrate the

ability to measure permeabillity effects and binding affinities of PROTAC

compounds to both target and E3 ligase, as well as monitor the kinetics of the

subsequent ternary complex (target:PROTAC:E3 ligase) formation, target

ubiquitination and recruitment to the proteasome in live cells. We further show the
power of this technology in extended kinetic monitoring of endogenous target
protein levels and the ability to quantify key degradation parameters including rate,
Dmax, and DCg,s. These studies facilitate discernment of individual parameters
required for successful degradation, ultimately enabling chemical design strategies

for optimization and rank ordering of therapeutic PROTAC compounds.

2. Protein Level and Degradation Profiles

HiBIT Endogenous Tagging and Kinetic Degradation
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« BET family members were endogenously tagged using CRISRP/CAS9 with 11AA

HiBIT fusion tag

« Complete cellular degradation profiles determined with continual luminescent reads

on GloMax Discover
« Degradation rate, Dmax, and DC., determined

3. Cellular Permeability and Target Binding

E3 NanoBRET Target Engagement (Lytic and Live Cell)
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« Compare binding affinities in lytic or live cell mode to understand cell permeability
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 NanoBRET target engagement of both E3 component and BET family members

Indicate reduced permeability of BET family PROTACs
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Key Cellular Assays and Technologies for Monitoring
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4. E3 Ternary Complex Formation

E3 NanoBRET Ternary Complex Assay
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« Monitor ternary complex formation and degradation simultaneously in a
single NanoBRET assay

« Use of MG132 can increase signal window
« Kinetic analysis allows for understanding of cellular ternary complex stability

5. Live Cell and Lytic Ubiquitination

NanoBRET Protein:Protein Ubiquitination (Live Cell)
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« Monitor live cell ubiquitination of any given target

* The different E3 ternary complexes recruited by dBET1 and MZ1 show
differential ubiquitination on respective targets
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6. Proteasomal Recruitment

NanoBRET Proteasome Assay
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» Detect increase of trafficking of BRD4 to proteasome in the
presence of PROTAC

« Parental compounds can be used as controls

* Itis not recommended to use proteasome inhibitors for the
assay

« Can simultaneously monitor loss of target (NL-BRD4) In
proteasome assay

7. Conclusions

Differentiating cellular technologies to study key processes in PROTAC-
mediated degradation for more rapid profiling of compounds

HiBiT and NanoLuc technology:
 Live cell kinetic degradation
« Amenable for use with CRISPR to study endogenous proteins

 Allows for quantitation of key degradation parameters

NanoBRET technology:

* Monitoring dynamic pathway interactions and signaling mechanisms
In live cells

« Useful for assessment of PROTAC cellular permeability

* Follow induced interactions with E3 ligase components, Ubiquitin, and
subsequent trafficking to proteasome
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