Cell Metabolism HTS Assays: Glucose, Lactate, Glutamine, and Glutamate Detection

Gediminas Vidugiris, Donna Leippe, Mary Sobol, James J. Cali, Cristopher Cowan and Jolanta Vidugiriene Promega Corporation, 2800 Woods Hollow Rd., Madison, WI 53711, USA

1. Introduction

Monitoring Cellular Energy Metabolism: Disturbances of the balances in cellular metabolism are associated with various maladies including cancer. Cancer cell metabolism is a complex, dynamic network of regulated pathways including glycolysis

and glutaminolysis. Here we describe bioluminescent glucose, lactate, glutamine, and glutamate detection assays that are well-suited for high-throughput analysis. The assays described here are suitable for measuring extracellular and intracellular metabolites. In addition, cell metabolism assays can be multiplexed with a real-time cell viability assay.

2. Assay Performance

Example assay set up in 96-well plate 50µl Metabolite in PBS 50µl Metabolite Detection Reagent Incubate 1h Read Luminescence

LOD	Linearity	S/B max
100nM (5pmol/50μl)	Up to 200µM	> 240
5nM (0.25pmol/50µl)	Up to 50µM	>1000
5nM (0.25pmol/50μl)	Up to 50µM	> 1000
5nM (0.25pmol/50μl)	Up to 50µM	> 500
	100nM (5pmol/50μl) 5nM (0.25pmol/50μl) 5nM (0.25pmol/50μl) 5nM (0.25pmol/50μl)	100nM (5pmol/50μl) Up to 200μM 5nM (0.25pmol/50μl) Up to 50μM 5nM (0.25pmol/50μl) Up to 50μM 5nM (0.25pmol/50μl) Up to 50μM

3. Extracellular HTS Assay Screening Protocols

Detection of extracellular metabolites in medium using Standard Volume 384 well plates

	Step	Volume or time	Details
1	Cells	80µI	SKOV-3 or OVCAR-3 cells in DMEM
2	Reaction Start	10µI	5mM Glucose, 2mM Glutamine and 10% dialyze
3	Incubation	Xhr	37°C, 5%CO ₂
4	Sampling	4µl	at 24, 48, 72hr medium transferred into 96-well p containing 96µl PBS/well
5	Storage	X days	-20°C
6	Metabolite analysis	9µl or 4.5µl	9µl sample for lactate detection; 4.5µl sample + buffer for glucose, glutamine and glutamate dete
7	Detection reaction	9µl	Lactate-Glo [™] or Glutamate-Glo [™] System
8	Incubation	90min	Room temperature
9	Metabolite read-out		Luminescence

	Step	Volume or time	Details
1	Cells	4µl	OVCAR-3 or SKOV-3 cells in DMEM (+ 1X RealTime-Glo™ Viability Assa
2	Reaction Start	2µl	15mM Glucose, 6mM Glutamine
3	Incubation	Xhr	37°C, 5%CO ₂
4	Reaction time	0.5, 1.0 or 2.0hr	All plate content
5	Cell viability		RealTime-Glo™ Viability Assay read
6	Reaction Stop	1µl	0.6N HCI / 0.1% DTAB; room temper
7	Detection reaction	9µl	Lactate- or Glutamate-Glo™ System containing 111mM Trizma
8	Incubation	60min	Room temperature
9	Metabolite read-out		Luminescence

www.promega.com

ed FBS

plates

4.5µl ection

All: SKOV-3 cells, Low Volume 384-well

9. Conclusions

Benefits of the new cellular Energy metabolism assays

- Wider assay window and broad linearity compared to colorimetric and fluorometric assays • Detect lactate, glucose, glutamate, or glutamine from cell culture media, cells, or tissue, with
- minimal sample preparation
- No sample deproteinization, centrifugation, or spin columns required
- Inactivation and neutralization solutions for easy sample preparation
- Compatible with standard and low volume 384 well formats for assay miniaturization • Assays are suited for measuring both extracellular and intracellular (homogeneous) metabolites

Multiplexing screening benefits

- Specific, robust, and sensitive
- Live cell assay in real-time with kinetic or end point measurements
- Compatible with standard and low volume 384-well formats for assay miniaturization

